Primality proof for n = 85984049513:
Take b = 2.
b^(n-1) mod n = 1.
10748006189 is prime.
b^((n-1)/10748006189)-1 mod n = 255, which is a unit, inverse 75193894280.
(10748006189) divides n-1.
(10748006189)^2 > n.
n is prime by Pocklington's theorem.