Primality proof for n = 861659:
Take b = 2.
b^(n-1) mod n = 1.
61547 is prime. b^((n-1)/61547)-1 mod n = 16383, which is a unit, inverse 450684.
(61547) divides n-1.
(61547)^2 > n.
n is prime by Pocklington's theorem.