Primality proof for n = 875803:
Take b = 2.
b^(n-1) mod n = 1.
145967 is prime. b^((n-1)/145967)-1 mod n = 63, which is a unit, inverse 152918.
(145967) divides n-1.
(145967)^2 > n.
n is prime by Pocklington's theorem.