Primality proof for n = 8773151:
Take b = 2.
b^(n-1) mod n = 1.
175463 is prime. b^((n-1)/175463)-1 mod n = 3420450, which is a unit, inverse 6174765.
(175463) divides n-1.
(175463)^2 > n.
n is prime by Pocklington's theorem.