Primality proof for n = 8874921343853306041:
Take b = 2.
b^(n-1) mod n = 1.
14924570207 is prime.
b^((n-1)/14924570207)-1 mod n = 7849612038129042896, which is a unit, inverse 4298973895397141494.
(14924570207) divides n-1.
(14924570207)^2 > n.
n is prime by Pocklington's theorem.