Primality proof for n = 889917602181551:
Take b = 2.
b^(n-1) mod n = 1.
278486521 is prime.
b^((n-1)/278486521)-1 mod n = 594923623531668, which is a unit, inverse 849903074800490.
(278486521) divides n-1.
(278486521)^2 > n.
n is prime by Pocklington's theorem.