Primality proof for n = 923162760505931681:
Take b = 2.
b^(n-1) mod n = 1.
11782777 is prime.
b^((n-1)/11782777)-1 mod n = 281177045365599280, which is a unit, inverse 238300704741543728.
1146787 is prime.
b^((n-1)/1146787)-1 mod n = 86959880074964066, which is a unit, inverse 255223048808871662.
(1146787 * 11782777) divides n-1.
(1146787 * 11782777)^2 > n.
n is prime by Pocklington's theorem.