Primality proof for n = 929098197455246849020086750707:
Take b = 2.
b^(n-1) mod n = 1.
2746144996771313789 is prime.
b^((n-1)/2746144996771313789)-1 mod n = 545614382912040204228954738669, which is a unit, inverse 47274776300796688218274861927.
(2746144996771313789) divides n-1.
(2746144996771313789)^2 > n.
n is prime by Pocklington's theorem.