Primality proof for n = 93179:
Take b = 2.
b^(n-1) mod n = 1.
46589 is prime. b^((n-1)/46589)-1 mod n = 3, which is a unit, inverse 31060.
(46589) divides n-1.
(46589)^2 > n.
n is prime by Pocklington's theorem.