Primality proof for n = 933937079203349671409932360755404077558846659923:
Take b = 2.
b^(n-1) mod n = 1.
21138543849953333 is prime.
b^((n-1)/21138543849953333)-1 mod n = 381893649414860393748713298135439479804617465464, which is a unit, inverse 227988334287904055013711255131717364090176900546.
1490039853025247 is prime.
b^((n-1)/1490039853025247)-1 mod n = 79514476505831518924408100333447021242511556862, which is a unit, inverse 616881544725873556008422054785860250264389921855.
(1490039853025247 * 21138543849953333) divides n-1.
(1490039853025247 * 21138543849953333)^2 > n.
n is prime by Pocklington's theorem.