Primality proof for n = 9347238719917243:
Take b = 2.
b^(n-1) mod n = 1.
4244885885521 is prime.
b^((n-1)/4244885885521)-1 mod n = 221639729211885, which is a unit, inverse 7096897053525091.
(4244885885521) divides n-1.
(4244885885521)^2 > n.
n is prime by Pocklington's theorem.