Primality proof for n = 9350987:
Take b = 2.
b^(n-1) mod n = 1.
1201 is prime.
b^((n-1)/1201)-1 mod n = 8760543, which is a unit, inverse 7529375.
229 is prime.
b^((n-1)/229)-1 mod n = 6867499, which is a unit, inverse 1732635.
(229 * 1201) divides n-1.
(229 * 1201)^2 > n.
n is prime by Pocklington's theorem.