Primality proof for n = 93575169138071:
Take b = 2.
b^(n-1) mod n = 1.
74050321 is prime.
b^((n-1)/74050321)-1 mod n = 84637254746981, which is a unit, inverse 20995656152167.
(74050321) divides n-1.
(74050321)^2 > n.
n is prime by Pocklington's theorem.