Primality proof for n = 936911738479:
Take b = 2.
b^(n-1) mod n = 1.
362301523 is prime.
b^((n-1)/362301523)-1 mod n = 189960273113, which is a unit, inverse 837167453679.
(362301523) divides n-1.
(362301523)^2 > n.
n is prime by Pocklington's theorem.