Primality proof for n = 9632869229268961407429404857:
Take b = 2.
b^(n-1) mod n = 1.
2928325597569402103 is prime.
b^((n-1)/2928325597569402103)-1 mod n = 647171152616717894684110797, which is a unit, inverse 3061254004733520643856457686.
(2928325597569402103) divides n-1.
(2928325597569402103)^2 > n.
n is prime by Pocklington's theorem.