Primality proof for n = 9816177919:
Take b = 2.
b^(n-1) mod n = 1.
514313 is prime. b^((n-1)/514313)-1 mod n = 4147490218, which is a unit, inverse 4389308354.
(514313) divides n-1.
(514313)^2 > n.
n is prime by Pocklington's theorem.