Primality proof for n = 9821045892686953:
Take b = 2.
b^(n-1) mod n = 1.
918583 is prime.
b^((n-1)/918583)-1 mod n = 2804373411492374, which is a unit, inverse 9695386336496747.
11783 is prime.
b^((n-1)/11783)-1 mod n = 4088245881053520, which is a unit, inverse 9177212952906503.
(11783 * 918583) divides n-1.
(11783 * 918583)^2 > n.
n is prime by Pocklington's theorem.