Primality proof for n = 99436943:
Take b = 2.
b^(n-1) mod n = 1.
8263 is prime.
b^((n-1)/8263)-1 mod n = 55532628, which is a unit, inverse 89514886.
547 is prime.
b^((n-1)/547)-1 mod n = 54194229, which is a unit, inverse 90599839.
(547 * 8263) divides n-1.
(547 * 8263)^2 > n.
n is prime by Pocklington's theorem.