Primality proof for n = 995329:
Take b = 7.
b^(n-1) mod n = 1.
3 is prime.
b^((n-1)/3)-1 mod n = 496799, which is a unit, inverse 497952.
2 is prime.
b^((n-1)/2)-1 mod n = 995327, which is a unit, inverse 497664.
(2^12 * 3^5) divides n-1.
(2^12 * 3^5)^2 > n.
n is prime by Pocklington's theorem.